🐐 Menentukan Asimtot Datar Dan Tegak

Menentukantitik balik grafik fungsi kuadrat; Mengenal bentuk umum persamaan fungsi rasional; Mengenal grafik fungsi rasional; Mengenal asimtot datar dan asimtot tegak; B. Kompetensi Dasar dan Indikator Pencapaian Kompetensi (IPK) Kompetensi Dasar (KD) Indikator Pencapaian Kompetensi (IPK) 2.1. Menunjukkan sikap jujur, tertib dan mengikuti
PembahasanFungsi ,penyebutnya akan sama dengan nol ketika Sehingga, asimtot tegaknya adalah Untuk menentukan asimtot datar maka Jadi, fungsi rasional memiliki asimtot tegak dan asimtot datar .Fungsi ,penyebutnya akan sama dengan nol ketika Sehingga, asimtot tegaknya adalah Untuk menentukan asimtot datar maka Jadi, fungsi rasional memiliki asimtot tegak dan asimtot datar .
\n\n\n\n \nmenentukan asimtot datar dan tegak
Akantetapi, asimtot ini didekati oleh fungsi pecah sampai pada titik di mana nilai x adalah ~. Jadi, persamaan garis asimtot datar adalah bila x = ~, maka 𝑦= ax + b cx + d y = a + b x c +d x . Suatu bilangan dibagi dengan ~ yaitu b d. Asimtot tegak adalah suatu garis lurus yang sejajar atau berimpit dengan sumbu y yang tidak akan terpotong. Asimtot secara umum adalah sebuah garis lurus atau lengkung yang mendekati kurva pada ujung-ujung intervalnya. Asimtot tidak diartikan sebagai garis yang tidak pernah dipotong oleh kurva karena ada kasus ketika kurva juga memotong asimtotnya. Asimtot juga tidak selalu berupa garis lurus, melainkan juga bisa berupa garis lengkung. Penekanan definisi asimtot bukanlah pada memotong atau tidak memotong kurva, melainkan pada mendekati kurva. Pada pembahasan mengenai asimtot fungsi aljabar, akan ditemukan 3 jenis asimtot, yaitu asimtot horizontal datar, asimtot vertikal tegak, dan asimtot miring. Beberapa definisi berikut diharapkan dapat memberikan kita satu pemahaman mengenai soal yang nanti akan dibahas. Definisi Fungsi Aljabar Fungsi aljabar adalah fungsi $fx$ yang memenuhi $Px, fx = 0$ dengan $Px, y$ sebagai polinomial bervariabel $x$ dan $y.$ Contohnya $fx = \dfrac{\sqrt{x + 4}}{x^2-2}.$ Fungsi yang tidak termasuk fungsi aljabar disebut fungsi transendental, misalnya $gx = \ln x.$ Definisi Fungsi Rasional Fungsi rasional adalah rasio perbandingan dari dua fungsi polinomial dengan bentuk umum $Rx = \dfrac{px}{qx}$ di mana $qx \neq 0.$ Asimtot Horizontal Untuk setiap konstanta tetapan $k$, garis $y = k$ adalah asimtot horizontal dari fungsi $f$ jika untuk $x$ mengecil/membesar tanpa batas, nilai fungsi semakin mendekati $k.$ Secara matematis, ditulis $x \to -\infty, fx \to k$ atau $x \to \infty, fx \to k.$ Asimtot Vertikal Untuk setiap konstanta tetapan $h$, garis $x = h$ adalah asimtot vertikal dari fungsi $f$ jika untuk $x$ mendekati $h$, nilai fungsi membesar/mengecil tanpa batas. Secara matematis, ditulis $x \to h^+, fx \to \pm \infty$ atau $x \to h^-, fx \to \pm \infty.$ Notasi $h^+$ artinya mendekati $h$ dari arah kanan, sedangkan $h^-$ artinya mendekati $h$ dari arah kiri. Asimtot Miring Asimtot miring adalah garis miring dengan persamaan umum $y = mx + n$ yang tidak pernah dipotong oleh kurva, melainkan hanya didekati pada ujung-ujung interval fungsi. Berikut ini merupakan sejumlah soal dan pembahasan terkait asimtot fungsi aljabar yang dikumpulkan dari berbagai referensi. Semoga dapat bermanfaat untuk menambah pemahaman mengenai materi tersebut. Quote by Richard Branson Do not be embarrassed by your failures. Learn from them and start again. Bagian Pilihan Ganda Soal Nomor 1 Kurva $fx = \dfrac{x^2-7x+10}{x^2-4x+3}$ mempunyai $\cdots \cdot$ satu asimtot vertikal dan satu asimtot horizontal satu asimtot vertikal dan dua asimtot horizontal dua asimtot vertikal dan satu asimtot horizontal dua asimtot vertikal dan dua asimtot horizontal tidak mempunyai asimtot vertikal, tetapi mempunyai satu asimtot horizontal Pembahasan Diketahui $fx = \dfrac{x^2-7x+10}{x^2-4x+3}.$ Akan diperiksa asimtot vertikal dan asimtot horizontal dari fungsi rasional tersebut. Asimtot Vertikal Perhatikan bahwa $$fx = \dfrac{x^2-7x+10}{x^2-4x+3} = \dfrac{x-2x-5}{x-1x-3}.$$Pembilang dan penyebut fungsi rasional tersebut tidak memiliki faktor bersama. Asimtot vertikal ditemukan ketika penyebutnya tersebut sama dengan nol. $$\begin{aligned} x^2-4x+3 & = 0 \\ x-1x-3 & = 0 \\ x = 1~\text{atau}~x & = 3 \end{aligned}$$Jadi, fungsi $fx$ memiliki dua asimtot vertikal, yakni $x = 1$ dan $x = 3.$ Asimtot Horizontal Diketahui $fx = \dfrac{\color{blue}{1x^2}-7x+10}{\color{red}{1x^2}-4x+3}.$ Tampak bahwa pembilang dan penyebut pada fungsi $f$ sama-sama berderajat dua. Bagi koefisien variabel berpangkat tertinggi pada pembilang dan penyebut, ditulis $y = \dfrac{1}{1} = 1.$ Jadi, fungsi hanya memiliki satu asimtot horizontal, yakni $y = 1.$ Jawaban C [collapse] Soal Nomor 2 Kurva lengkung $y = \dfrac{x^2}{x^2+1}$ mempunyai $\cdots \cdot$ A. satu asimtot B. dua asimtot C. tiga asimtot D. empat asimtot E. lima asimtot Pembahasan Diketahui $y = \dfrac{x^2}{x^2 + 1}.$ Akan diperiksa asimtot yang dimiliki oleh fungsi rasional tersebut. Asimtot Vertikal Jelas bahwa pembilang dan penyebut fungsi rasional itu tidak memiliki faktor bersama. Asimtot vertikal ditemukan ketika penyebut fungsi rasional tersebut sama dengan nol. Dengan kata lain, kita mencari penyelesaian dari persamaan $x^2 + 1 = 0,$ padahal persamaan ini tidak memiliki penyelesaian real tidak ada nilai $x$ yang memenuhi. Jadi, fungsi rasional tersebut tidak memiliki asimtot vertikal. Asimtot Horizontal Diketahui $y = \dfrac{\color{blue}{1x^2}}{\color{red}{1x^2}+1}.$ Tampak bahwa pembilang dan penyebut pada fungsi $f$ sama-sama berderajat dua. Bagi koefisien variabel berpangkat tertinggi pada pembilang dan penyebut, ditulis $y = \dfrac{1}{1} = 1.$ Jadi, fungsi hanya memiliki satu asimtot horizontal, yakni $y = 1.$ Asimtot Miring Suatu fungsi rasional memiliki asimtot miring jika derajat pembilangnya satu lebih tinggi dari derajat penyebutnya. Karena kondisi ini tidak terpenuhi untuk fungsi rasional $y = \dfrac{x^2}{x^2+1},$ maka disimpulkan bahwa fungsi tersebut tidak memiliki asimtot miring. Jadi, fungsi $y = \dfrac{x^2}{x^2 + 1}$ hanya memiliki satu asimtot. Jawaban A [collapse] Baca Soal dan Pembahasan – Limit Fungsi Aljabar Soal Nomor 3 Asimtot vertikal dari fungsi $fx = \dfrac{2x-8}{x^2-7x+12}$ adalah $\cdots \cdot$ A. $x=3$ dan $x=4$ B. $x=2$ saja C. $x=3$ saja D. $x=4$ saja E. tidak ada Pembahasan Perhatikan bahwa $$fx = \dfrac{2x-8}{x^2-7x+12} = \dfrac{2x-4}{x-3x-4}.$$ $x-4$ merupakan faktor bersama bagi pembilang dan penyebut fungsi rasional itu. Asimtot vertikal ditemukan ketika penyebut fungsi rasional tersebut sama dengan nol. $$\begin{aligned} x^2-7x+12 & = 0 \\ x-3x-4 & = 0 \\ x = 3~\text{atau}~x & = 4 \end{aligned}$$Namun, karena $x-4$ merupakan faktor bersama, $x = 4$ bukanlah asimtot vertikal. Jadi, fungsi $fx$ hanya memiliki satu asimtot vertikal, yakni $x = 3.$ Jawaban C [collapse] Soal Nomor 4 Asimtot miring fungsi $fx = \dfrac{x^2+3x+3}{x+1}$ adalah $\cdots \cdot$ A. $y = x$ D. $y = x-1$ B. $y = x-2$ E. $y=x+2$ C. $y = x+1$ Pembahasan Diketahui $fx = \dfrac{x^2+3x+3}{x+1}.$ Tampak bahwa derajat pembilang satu lebihnya dari derajat penyebut pembilang 2 dan penyebut 1 sehingga fungsi tersebut memiliki asimtot miring. Asimtot miringnya diwakili oleh hasil bagi ketika kita membagi $x^2 + 3x + 3$ dengan $x + 1$ bisa menggunakan skema pembagian bersusun, metode Horner, atau yang lainnya. Berikut ini kita gunakan skema pembagian bersusun. Diperoleh hasil baginya adalah $x + 2.$ Jadi, dapat disimpulkan bahwa asimtot miringnya adalah $\boxed{y = x + 2}$ Jawaban E [collapse] Soal Nomor 5 Asimtot miring dari grafik $gx = \dfrac{3x^5+x^4+2x^2+1}{x^4+3}$ adalah $\cdots \cdot$ A. $y = 2x +1$ D. $y = 3x-1$ B. $y = 2x-3$ E. tidak ada C. $y = 3x+1$ Pembahasan Diketahui $gx = \dfrac{3x^5+x^4+2x^2+1}{x^4+3}.$ Tampak bahwa derajat pembilang satu lebihnya dari derajat penyebut pembilang 5 dan penyebut 4 sehingga fungsi tersebut memiliki asimtot miring. Asimtot miringnya diwakili oleh hasil bagi ketika kita membagi $3x^5+x^4+2x^2+1$ dengan $x^4 + 3$ bisa menggunakan skema pembagian bersusun atau yang lainnya. Berikut ini kita gunakan skema pembagian bersusun. Diperoleh hasil baginya adalah $3x + 1.$ Jadi, dapat disimpulkan bahwa asimtot miringnya adalah $\boxed{y = 3x + 1}$ Jawaban C [collapse] Soal Nomor 6 Asimtot vertikal dan horizontal fungsi $fx = \dfrac{x^3+2x+1}{x^3-x}$ adalah $\cdots \cdot$ A. $x = 0$ dan $x = 1$ B. $x = 0$, $x = 1$, dan $y = 1$ C. $x = 1$ dan $y = 1$ D. $x = -1$, $x = 0$, $x = 1$, dan $y = 1$ E. $x = -1$, $x = 0$, $x = 1$, dan $y = 0$ Pembahasan Diketahui $fx = \dfrac{x^3+2x+1}{x^3-x}.$ Akan diperiksa asimtot vertikal dan horizontal yang dimiliki oleh fungsi rasional tersebut. Asimtot Vertikal Asimtot vertikal ditemukan ketika penyebut fungsi rasional tersebut sama dengan nol. $$\begin{aligned} x^3-x & = 0 \\ xx^2-1 & = 0 \\ xx+1x-1 & = 0 \end{aligned}$$Diperoleh penyelesaiannya adalah $x = -1, 0, 1.$ Jadi, fungsi tersebut memiliki tiga asimtot vertikal, yakni $x = -1$, $x = 0$, dan $x = 1.$ Asimtot Horizontal Diketahui $fx = \dfrac{\color{blue}{x^3}+2x+1}{\color{blue}{x^3}-x}.$ Tampak bahwa pembilang dan penyebut pada fungsi itu sama-sama berderajat tiga. Bagi koefisien variabel berpangkat tertinggi pada pembilang dan penyebut, ditulis $y = \dfrac{1}{1} = 1.$ Jadi, fungsi hanya memiliki satu asimtot horizontal, yakni $y = 1.$ Jadi, fungsi tersebut memiliki asimtot vertikal $x = -1$, $x = 0$, dan $x = 1$, sedangkan asimtot horizontalnya adalah $y = 1.$ Jawaban D [collapse] Soal Nomor 7 Grafik $fx = \dfrac{6}{x^2-4}$ memiliki $\cdots \cdot$ satu asimtot vertikal, yaitu $x = 2$ sumbu $Y$ sebagai asimtot vertikal sumbu $X$ sebagai asimtot horizontal dan $x = \pm 2$ sebagai asimtot vertikal dua asimtot vertikal, yaitu $x = \pm 2$, tetapi tidak memiliki asimtot horizontal dua asimtot horizontal, yaitu $y = \pm 2$, tetapi tidak memiliki asimtot vertikal Pembahasan Diketahui $fx = \dfrac{6}{x^2-4}.$ Akan diperiksa asimtot yang dimiliki oleh fungsi rasional tersebut. Asimtot Vertikal Asimtot vertikal ditemukan ketika penyebut fungsi rasional tersebut sama dengan nol. $$\begin{aligned} x^2-4 & = 0 \\ x-2x+2 & = 0 \\ x = 2~\text{dan}~x & = -2 \end{aligned}$$Jadi, fungsi $fx$ memiliki dua asimtot vertikal, yakni $x = \pm 2.$ Asimtot Horizontal Tampak bahwa derajat pembilang lebih rendah dibandingkan derajat penyebut pembilang 0 dan penyebut 2 sehingga dapat langsung disimpulkan bahwa asimtot horizontal fungsi rasional tersebut adalah sumbu $X$ atau persamaan $y = 0.$ Asimtot Miring Suatu fungsi rasional memiliki asimtot miring jika derajat pembilangnya satu lebih tinggi dari derajat penyebutnya. Karena kondisi ini tidak terpenuhi untuk fungsi rasional $fx = \dfrac{6}{x^2-4},$ maka disimpulkan bahwa fungsi tersebut tidak memiliki asimtot miring. Jadi, grafik $fx = \dfrac{6}{x^2-4}$ memiliki sumbu $X$ sebagai asimtot horizontal dan $x = \pm 2$ sebagai asimtot vertikal. Jawaban C [collapse] Soal Nomor 8 Garis $y = 5$ adalah asimtot horizontal dari fungsi $\cdots \cdot$ A. $y = \dfrac{x-5}{x+5}$ B. $y = 5x$ C. $y = \dfrac{1}{x-5}$ D. $y = \dfrac{5x}{1-x}$ E. $y = \dfrac{20x^2-x}{1+4x^2}$ Pembahasan Hanya fungsi rasional fungsi pecahan yang memiliki asimtot horizontal. Syaratnya adalah derajat pembilang lebih rendah atau sama dengan derajat penyebutnya. Cek Opsi A Diketahui $y = \dfrac{\color{blue}{x}-5}{\color{blue}{x}+5}.$ Tampak bahwa pembilang dan penyebut pada fungsi $f$ sama-sama berderajat satu. Bagi koefisien variabel berpangkat tertinggi pada pembilang dan penyebut, ditulis $y = \dfrac{1}{1} = 1.$ Jadi, fungsi itu memiliki asimtot horizontal $y = 1.$ Cek Opsi B Diketahui $y = 5x.$ Fungsi ini bukan fungsi rasional melainkan fungsi linear sehingga tidak memiliki asimtot. Cek Opsi C Diketahui $y = \dfrac{1}{x-5}.$ Tampak bahwa derajat pembilang lebih rendah dibandingkan derajat penyebut pembilang 0 dan penyebut 1 sehingga dapat langsung disimpulkan bahwa asimtot horizontal fungsi rasional tersebut adalah sumbu $X$ atau persamaan $y = 0.$ Cek Opsi D Diketahui $y = \dfrac{\color{blue}{5x}}{1\color{blue}{-x}}.$ Tampak bahwa pembilang dan penyebut pada fungsi $f$ sama-sama berderajat satu. Bagi koefisien variabel berpangkat tertinggi pada pembilang dan penyebut, ditulis $y = \dfrac{5}{-1} = -5.$ Jadi, fungsi itu memiliki asimtot horizontal $y = -5.$ Cek Opsi E Diketahui $y = \dfrac{\color{blue}{20x^2}-x}{1+\color{blue}{4x^2}}.$ Tampak bahwa pembilang dan penyebut pada fungsi $f$ sama-sama berderajat dua. Bagi koefisien variabel berpangkat tertinggi pada pembilang dan penyebut, ditulis $y = \dfrac{20}{4} = 5.$ Jadi, fungsi itu memiliki asimtot horizontal $y = 5.$ Jadi, $y = 5$ adalah asimtot horizontal dari fungsi $\boxed{y = \dfrac{20x^2-x}{1+4x^2}}$ Jawaban E [collapse] Soal Nomor 9 Fungsi berikut yang tidak memiliki asimtot vertikal adalah $\cdots \cdot$ A. $y = \dfrac{x+2}{x^2-3}$ B. $y = \dfrac{x}{x-2^2}$ C. $y = \dfrac{x^2-9}{x+3}$ D. $y = -\dfrac{3}{x}$ E. $y = \dfrac{x-3}{x^2-4}$ Pembahasan Hanya fungsi rasional yang memiliki asimtot vertikal. Asimtot vertikal ditemukan ketika kita membuat penyebut sama dengan nol. Cek Opsi A Diketahui $y = \dfrac{x+2}{x^2-3} = \dfrac{x+2}{x+\sqrt3x-\sqrt3}.$ Bentuk terakhir sudah paling sederhana karena tidak memiliki faktor bersama pada pembilang dan penyebutnya. Diperoleh asimtot vertikalnya adalah $x = -\sqrt3$ dan $x = \sqrt3.$ Cek Opsi B Diketahui $y = \dfrac{x}{x-2^2}.$ Bentuk ini sudah paling sederhana karena tidak memiliki faktor bersama pada pembilang dan penyebutnya. Diperoleh asimtot vertikalnya adalah $x = 2.$ Cek Opsi C Diketahui $$\begin{aligned} y & = \dfrac{x^2-9}{x+3} \\ y & = \dfrac{\cancel{x + 3}x-3}{\cancel{x+3}} \\ y & = x-3 && x \neq -3 \end{aligned}$$Jadi, fungsi ini bukanlah fungsi rasional, melainkan fungsi linear yang tidak terdefinisi di $x = -3.$ Ini artinya, fungsi ini tidak memiliki asimtot vertikal. Cek Opsi D Diketahui $y = -\dfrac{3}{x}.$ Bentuk ini sudah paling sederhana karena tidak memiliki faktor bersama pada pembilang dan penyebutnya. Diperoleh asimtot vertikalnya adalah $x = 0.$ Cek Opsi E Diketahui $y = \dfrac{x-3}{x^2-4} = \dfrac{x-3}{x+2x-2}.$ Bentuk terakhir sudah paling sederhana karena tidak memiliki faktor bersama pada pembilang dan penyebutnya. Diperoleh asimtot vertikalnya adalah $x = -2$ dan $x = 2.$ Jadi, fungsi yang tidak memiliki asimtot vertikal adalah $\boxed{y = \dfrac{x^2-9}{x+3}}$ Jawaban C [collapse] Baca Soal dan Pembahasan – Limit Tak Hingga Soal Nomor 10 Pernyataan yang benar tentang kurva $y = \dfrac{2x^2+4}{2+7x-4x^2}$ adalah $\cdots \cdot$ garis $x = -\dfrac14$ sebagai asimtot vertikal garis $x = 1$ sebagai asimtot vertikal garis $y = -\dfrac14$ sebagai asimtot horizontal grafik tidak memiliki asimtot horizontal dan vertikal garis $y = 2$ sebagai asimtot horizontal Pembahasan Diketahui $y = \dfrac{2x^2+4}{2+7x-4x^2}.$ Akan diperiksa asimtot yang dimiliki oleh fungsi rasional tersebut. Asimtot Vertikal Asimtot vertikal ditemukan ketika penyebut fungsi rasional tersebut sama dengan nol. $$\begin{aligned} 2 + 7x-4x^2 & = 0 \\ 4x^2-7x-2 & = 0 \\ 4x+1x-2 & = 0 \\ x = -\dfrac14~\text{atau}~x & = 2 \end{aligned}$$Jadi, fungsi tersebut memiliki dua asimtot vertikal, yakni $x = -\dfrac14$ dan $x = 2.$ Asimtot Horizontal Diketahui $y = \dfrac{\color{blue}{2x^2}+4}{2+7x\color{blue}{-4x^2}}.$ Tampak bahwa pembilang dan penyebut pada fungsi itu sama-sama berderajat dua. Bagi koefisien variabel berpangkat tertinggi pada pembilang dan penyebut, ditulis $y = \dfrac{2}{-4} = -\dfrac12.$ Jadi, fungsi hanya memiliki satu asimtot horizontal, yakni $y = -\dfrac12.$ Asimtot Miring Suatu fungsi rasional memiliki asimtot miring jika derajat pembilangnya satu lebih tinggi dari derajat penyebutnya. Karena kondisi ini tidak terpenuhi untuk fungsi rasional itu, maka disimpulkan bahwa fungsi tersebut tidak memiliki asimtot miring. Berdasarkan opsi yang ada, pernyataan yang benar adalah garis $x = -\dfrac14$ sebagai asimtot vertikal. Jawaban A [collapse] Soal Nomor 11 Berikut ini adalah ciri dari suatu fungsi rasional. Asimtot vertikalnya adalah $x=2.$ Asimtot horizontalnya adalah $y=8.$ Kurva tidak kontinu pada titik $3, 9.$ Fungsi rasional berikut yang memenuhi ciri di atas adalah $\cdots \cdot$ A. $fx = \dfrac{x-3}{x+3x-2}-8$ B. $fx = \dfrac{x-3}{x-3x+2}-8$ C. $fx = \dfrac{x-3}{x-3x-2}+8$ D. $fx = \dfrac{x+3}{x+2x+3}+8$ E. $fx = \dfrac{x-2}{x-3x+2}+8$ Pembahasan Diketahui bahwa fungsi $fx$ yang akan dibuat adalah fungsi rasional. Persamaan asimtot vertikal adalah $x = 2$, artinya ada faktor $x-2$ pada penyebut. Untuk sementara, kita tuliskan $$fx = \dfrac{1}{x-2}$$Persamaan asimtot horizontal adalah $y = 8.$ Dengan menyamakan derajat pembilang dan penyebut, kita dapat tuliskan $$fx = \dfrac{8x}{x-2}$$atau bisa juga berbentuk $$fx = \dfrac{x}{x-2} + 8$$Kurva tidak kontinu pada titik $3, 9$, artinya pembilang dan penyebut sama-sama memiliki faktor $x-3.$ Dengan menyesuaikan opsi pilihan ganda yang diberikan, kita peroleh bahwa fungsi $$fx = \dfrac{x-3}{x-3x-2} + 8$$memenuhi ketiga kriteria tersebut. Jawaban C [collapse] Soal Nomor 12 Fungsi berikut yang memiliki asimtot vertikal pada $x=2$ dan asimtot horizontal pada $y=1$ adalah $\cdots \cdot$ A. $y = \dfrac{3x^2-6x+9}{x^2+3x+2}$ B. $y = \dfrac{3}{x-2}$ C. $y = \dfrac{x+3}{x^2-4}$ D. $y = \dfrac{x^2-9}{x^2-4x+4}$ E. $y = \dfrac{x^2-4}{x^2-3x+2}$ Pembahasan Cek Opsi A Diberikan $y = \dfrac{3x^2-6x+9}{x^2+3x+2}.$ Dapat kita faktorkan menjadi $$ y = \dfrac{3x^2-2x+3}{x+2x+1}$$Dari penyebut, kita ketahui bahwa asimtot vertikalnya ada dua, yaitu $x = -2$ dan $x = -1.$ Karena pembilang dan penyebut berderajat sama, maka asimtot horizontalnya merupakan hasil bagi koefisien derajat tertinggi pembilang dan penyebut, yaitu $y = \dfrac31 = 3.$ Jadi, kriteria tidak terpenuhi. Cek Opsi B Diberikan $y = \dfrac{3}{x-2}.$ Jelas dari penyebut, asimtot vertikalnya adalah $x = 2.$ Karena derajat pembilang lebih kecil dari derajat penyebut, maka asimtot horizontalnya adalah $y = 0.$ Jadi, kriteria tidak terpenuhi. Cek Opsi C Diberikan $y = \dfrac{x+3}{x^2-4}.$ Dapat kita faktorkan menjadi $$y = \dfrac{x+3}{x+2x-2}$$Dari penyebut, kita ketahui bahwa asimtot vertikalnya ada dua, yaitu $x = -2$ dan $x = 2.$ Karena derajat pembilang lebih kecil dari derajat penyebut, maka asimtot horizontalnya adalah $y = 0.$ Jadi, kriteria tidak terpenuhi. Cek Opsi D Diberikan $y = \dfrac{x^2-9}{x^2-4x+4}.$ Dapat kita faktorkan menjadi $$y = \dfrac{x+3x-3}{x-2x-2}$$Dari penyebut, kita ketahui bahwa asimtot vertikalnya hanya ada satu, yaitu $x = 2.$ Karena pembilang dan penyebut berderajat sama, maka asimtot horizontalnya merupakan hasil bagi koefisien derajat tertinggi pembilang dan penyebut, yaitu $y = \dfrac11 = 1.$ Jadi, kriteria tidak terpenuhi. Cek Opsi E Diberikan $y = \dfrac{x^2-4}{x^2-3x+2}.$ Dapat kita faktorkan menjadi $$\begin{aligned} y &= \dfrac{x+2x-2}{x-2x-1} \\ & = \dfrac{x+2}{x-1} \end{aligned}$$Dari penyebut, kita ketahui bahwa asimtot vertikalnya hanya ada satu, yaitu $x = 1.$ Karena pembilang dan penyebut berderajat sama, maka asimtot horizontalnya merupakan hasil bagi koefisien derajat tertinggi pembilang dan penyebut, yaitu $y = \dfrac11 = 1.$ Jadi, kriteria tidak terpenuhi. Jawaban D [collapse] Soal Nomor 13 Kurva $y = \dfrac{x^3+x^2+1}{x^3+10}$ memotong asimtot datarnya di koordinat $\cdots \cdot$ A. $1, -3$ dan $1, 3$ B. $-3, 1$ dan $3, 1$ C. $-1, 3$ dan $-1, -3$ D. $-1, -3$ dan $1, 3$ E. $3, -1$ dan $3, -1$ Pembahasan Diketahui $y = \dfrac{x^3+x^2+1}{x^3+10}.$ Tampak bahwa $y$ adalah fungsi rasional dengan pembilang dan penyebut merupakan polinomial berderajat tiga. Karena derajatnya sama, maka asimtot datarnya merupakan hasil bagi koefisien pangkat tertinggi pembilang dan penyebut, yaitu $$y = \dfrac11 = 1$$Sekarang, substitusikan $y = 1.$ $$\begin{aligned} y & = \dfrac{x^3+x^2+1}{x^3+10} \\ \Rightarrow 1 & = \dfrac{x^3+x^2+1}{x^3+10} \\ x^3+10 & = x^3+x^2+1 \\ x^2-9 & = 0 \\ x+3x-3 & = 0 \\ x = -3~\text{atau}~x & = 3 \end{aligned}$$Jadi, asimtot datar dipotong oleh kurva pada dua titik, yaitu di koordinat $-3, 1$ dan $3, 1.$ Jawaban B [collapse] Soal Nomor 14 Fungsi $f$ yang grafiknya diberikan pada gambar di bawah ini adalah $\cdots \cdot$ A. $fx=\dfrac{x-1x-3}{x-2}$ B. $fx=\dfrac{x-1x-3}{x-2^2}$ C. $fx=\dfrac{2x-1x-3}{x-2}$ D. $fx=\dfrac{2x-1x-3}{x-2^2}$ E. $fx=\dfrac{2x-1x-3}{x-2^3}$ Pembahasan Dari grafik tersebut, tampak bahwa kurva memiliki satu asimtot vertikal dengan persamaan $x = 2$ sehingga penyebut fungsi memiliki faktor $x-2.$ Kurva juga terlihat memiliki satu asimtot horizontal dengan persamaan $y = 2$. Ini menunjukkan bahwa derajat pembilang dan penyebut fungsi sama dengan perbandingan koefisien $2 1.$ Kurva memotong sumbu $X$ di $1, 0$ dan $3, 0.$ Artinya ada bentuk $x-1$ dan $x-3$ pada pembilang fungsi. Agar memiliki derajat yang sama dengan pembilang, maka $x-2$ pada penyebut harus dipangkatkan dua. Fungsi yang sesuai dengan kriteria tersebut adalah $fx=\dfrac{2x-1x-3}{x-2^2}$ Jawaban D [collapse] Soal Nomor 15 Fungsi berikut ini yang memiliki asimtot miring adalah $\cdots \cdot$ A. $fx=\dfrac{x^5+2}{x^4-4x^2+4}$ B. $fx=\dfrac{x^2-1}{x^3+x^2+1}$ C. $fx=\dfrac{4x^2+x+2}{x^2}$ D. $fx=\dfrac{x^5}{x^2-1}$ E. $fx=\dfrac{4x^2-1}{x^4-1}$ Pembahasan Suatu fungsi rasional memiliki asimtot miring jika derajat pembilangnya satu lebih tinggi dari derajat penyebutnya. Cek Opsi A Diketahui $fx=\dfrac{x^5+2}{x^4-4x^2+4}.$ Derajat pembilang = 5 dan derajat penyebut = 4. Kondisi terpenuhi sehingga fungsi ini memiliki asimtot miring. Cek Opsi B Diketahui $fx=\dfrac{x^2-1}{x^3+x^2+1}.$ Derajat pembilang = 2 dan derajat penyebut = 3. Kondisi tidak terpenuhi sehingga fungsi ini tidak memiliki asimtot miring. Cek Opsi C Diketahui $fx=\dfrac{4x^2+x+2}{x^2}.$ Derajat pembilang = 2 dan derajat penyebut = 2. Kondisi tidak terpenuhi sehingga fungsi ini tidak memiliki asimtot miring. Cek Opsi D Diketahui $fx=\dfrac{x^5}{x^2-1}.$ Derajat pembilang = 5 dan derajat penyebut = 2. Kondisi tidak terpenuhi sehingga fungsi ini tidak memiliki asimtot miring. Cek Opsi E Diketahui $fx=\dfrac{4x^2-1}{x^4-1}.$ Derajat pembilang = 2 dan derajat penyebut = 4. Kondisi tidak terpenuhi sehingga fungsi ini tidak memiliki asimtot miring. Jadi, fungsi berikut ini yang memiliki asimtot miring adalah $\boxed{fx=\dfrac{x^5+2}{x^4-4x^2+4}}$ Jawaban A [collapse] Soal Nomor 16 Fungsi-fungsi berikut ini yang memiliki sebuah lubang, memiliki sebuah titik potong dengan sumbu $X$, tetapi tidak memiliki asimtot miring adalah $\cdots \cdot$ A. $fx=\dfrac{x^2-1}{x^3+x^2+1}$ B. $fx=\dfrac{x-7x^2-1}{x-7x-2}$ C. $fx=\dfrac{x-7x^3-4}{x-7x+5}$ D. $fx=\dfrac{x-7x^2-2}{x-7x-2}$ E. $fx=\dfrac{x-7}{x-7x-2}$ Pembahasan Kriteria 1 Memiliki sebuah lubang memiliki arti bahwa ada satu faktor yang sama pada pembilang dan penyebut fungsi. Opsi A tidak memenuhi karena $x^2-1 = x+1x-1,$ sedangkan $x+1$ maupun $x-1$ bukanlah faktor dari $x^3+x^2+1.$ Kriteria 2 Memiliki titik potong terhadap sumbu $X$, artinya pembilang memiliki satu faktor lain yang tidak dimiliki oleh penyebut. Opsi B tidak memenuhi karena pembilangnya memiliki dua faktor lain, yaitu $x^2-1 = x+1x-1.$ Opsi C masih memenuhi karena $x^3-4 = 0$ jelas memiliki satu penyelesaian real, yakni $x = \sqrt[4]{3}.$ Opsi D tidak memenuhi karena pembilangnya memiliki dua faktor lain, yaitu $x^2-2 = x+\sqrt2x-\sqrt2.$ Opsi E tidak memenuhi karena tidak memiliki faktor lain selain faktor bersama. Kriteria 3 Grafik fungsi memiliki asimtot miring jika bentuknya pecahan dengan derajat pembilang satu lebihnya dari derajat penyebut. Opsi C memenuhi kondisi bahwa fungsi tidak memiliki asimtot miring karena derajat pembilangnya $4,$ sedangkan derajat penyebutnya $2.$ Jawaban C [collapse] Soal Nomor 17 Supaya grafik $y = \dfrac{2x+a}{3x+b}$ tidak memiliki asimtot vertikal, nilai $b$ seharusnya sama dengan $\cdots \cdot$ A. $\dfrac13a$ D. $a$ B. $\dfrac12a$ E. $\dfrac32a$ C. $\dfrac34a$ Pembahasan Agar tidak memiliki asimtot vertikal, pembilang dan penyebut fungsi tersebut harus saling berkelipatan memiliki faktor persekutuan. Karena berderajat sama, maka akan ada $k \neq 0$ sehingga berlaku $k2x + a = 3x + b.$ Perhatikan bahwa persamaan tersebut dapat ditulis menjadi $$\dfrac23k\left3x + \dfrac32a\right = 3x + b$$Dengan mengabaikan konstanta pembanding $\dfrac23k$, kita peroleh bahwa $\boxed{b = \dfrac32a}$ Jawaban E [collapse] Soal Nomor 18 Asimtot horizontal dari grafik $y = \dfrac{5+2^x}{1-2^x}$ adalah $\cdots \cdot$ A. $y = -1$ saja B. $y = 0$ saja C. $y = 5$ saja D. $y = -1$ dan $y = 0$ E. $y = -1$ dan $y = 5$ Pembahasan Perhatikan bahwa $y = \dfrac{5+2^x}{1-2^x}$ bukan merupakan fungsi rasional karena pembilang/penyebut bukan polinomial. Untuk menentukan asimtot horizontalnya, kita dapat mencari nilai limit fungsi ketika $x$ mendekati tak hingga dan $x$ mendekati negatif tak hingga. Kita tuliskan $$\begin{aligned} \displaystyle \lim_{x \to \infty} \dfrac{5+2^x}{1-2^x} & = \lim_{x \to \infty} \dfrac{\dfrac{5}{2^x}+1}{\dfrac{1}{2^x}-1} \\ & = \dfrac{0 + 1}{0-1} \\ & = \dfrac{1}{-1} = -1 \end{aligned}$$dan $$\begin{aligned} \displaystyle \lim_{x \to -\infty} \dfrac{5+2^x}{1-2^x} & = \dfrac{5 + 0}{1-0} \\ & = 5 \end{aligned}$$Jadi, asimtot horizontal fungsi aljabar tersebut adalah $y = -1$ dan $y = 5.$ Jawaban E [collapse] Soal Nomor 19 Grafik fungsi $fx = \dfrac{x+2^kx^2-1}{x^2+x-2x^2+3x+2}$ untuk bilangan asli $k$ akan mempunyai satu asimtot tegak jika $k = \cdots \cdot$ A. $0$ C. $2$ E. $4$ B. $1$ D. $3$ Pembahasan Pertama, faktorkan pembilang dan penyebut fungsi rasional tersebut terlebih dahulu. $$\begin{aligned} fx & = \dfrac{x+2^kx^2-1}{x^2+x-2x^2+3x+2} \\ & = \dfrac{x+2^k\cancel{x+1}\bcancel{x-1}}{x+2\bcancel{x-1}x+2\cancel{x+1}} \\ & = \dfrac{x+2^k}{x+2x+2} \end{aligned}$$Perhatikan bahwa pembilang dan penyebut akan memiliki faktor yang sama untuk $k \geq 1.$ Agar memiliki satu asimtot tegak, maka penyebut harus memiliki satu faktor setelah disederhanakan. Ini menunjukkan bahwa $k = 1$ akan membuat $fx = \dfrac{x+2^1}{x+2x+2} = \dfrac{1}{x+2}.$ Nilai $k$ yang lain akan membuat fungsi tidak memiliki asimtot tegak. Catatan Perhatikan bahwa $k$ adalah bilangan asli sehingga $k = 0$ tidak memenuhi meskipun membuat fungsi juga memiliki satu asimtot tegak. Jawaban B [collapse] Soal Nomor 20 Diketahui fungsi $fx = \dfrac{ax + 5}{\sqrt{x^2+bx+1}}$ dengan $a>0$ dan $b 0,$ maka nilai $a$ yang dipilih adalah $a = 3.$ Jadi, dapat disimpulkan bahwa nilai dari $\boxed{a+2b=3+2-2=-1}$ Jawaban B [collapse] Bagian Uraian Soal Nomor 1 Tentukan persamaan asimtot tegak dan asimtot datar dari fungsi $fx = \dfrac{x-5}{\sqrt{x^2-3x+2}}.$ Pembahasan Diketahui $fx = \dfrac{x-5}{\sqrt{x^2-3x+2}}.$ Asimtot Tegak Vertikal Asimtot tegak ditemukan ketika penyebut fungsi sama dengan nol. $$\begin{aligned} \sqrt{x^2-3x+2} & = 0 \\ x^2-3x+2 & = 0 \\ x-1x-2 & = 0 \\ x = 1~\text{atau}~x & = 2 \end{aligned}$$Jadi, asimtot tegak fungsi tersebut adalah $x = 1$ dan $x = 2.$ Asimtot Datar Horizontal Kita gunakan konsep limit tak hingga sesuai dengan definisi asimtot horizontal. $$\begin{aligned} \displaystyle \lim_{x \to \infty} \dfrac{x-5}{\sqrt{x^2-3x+2}} & = \lim_{x \to \infty} \dfrac{\dfrac{x}{x}-\dfrac{5}{x}}{\sqrt{\dfrac{x^2}{x^2}-\dfrac{3x}{x^2}+\dfrac{2}{x^2}}} \\ & = \dfrac{1-0}{\sqrt{1-0+0}} \\ & = \dfrac{1}{1} = 1 \end{aligned}$$dan $$\begin{aligned} \displaystyle \lim_{x \to -\infty} \dfrac{x-5}{\sqrt{x^2-3x+2}} & = \lim_{x \to \infty} \dfrac{\dfrac{x}{x}-\dfrac{5}{x}}{\sqrt{\dfrac{x^2}{x^2}-\dfrac{3x}{x^2}+\dfrac{2}{x^2}}} \\ & = \dfrac{-1-0}{\sqrt{1-0+0}} \\ & = \dfrac{-1}{1} = -1 \end{aligned}$$Jadi, asimtot datar fungsi tersebut adalah $y = 1$ dan $y = -1.$ [collapse] Soal Nomor 2 Tentukan persamaan asimtot tegak dan asimtot datar dari fungsi $$fx = \sqrt{4x^2-2x+1}-\sqrt{4x^2+2x-5}.$$ Pembahasan Asimtot Tegak Vertikal Fungsi tersebut tidak memiliki asimtot tegak karena berdasarkan definisinya, tidak ada bilangan $a$ yang memenuhi $$\displaystyle \lim_{x \to a} \sqrt{4x^2-2x+1}-\sqrt{4x^2+2x-5} = \infty$$Asimtot Datar Horizontal Fungsi dapat dinyatakan dalam bentuk pecahan dengan cara merasionalkan seperti berikut. $$\begin{aligned} fx & = \sqrt{4x^2-2x+1}-\sqrt{4x^2+2x-5} \times \dfrac{\sqrt{4x^2-2x+1}+\sqrt{4x^2+2x-5}}{\sqrt{4x^2-2x+1}+\sqrt{4x^2+2x-5}} \\ & = \dfrac{4x^2-2x+1-4x^2+2x-5}{\sqrt{4x^2-2x+1}+\sqrt{4x^2+2x-5}} \\ & = \dfrac{-4x + 6}{\sqrt{4x^2-2x+1}+\sqrt{4x^2+2x-5}} \end{aligned}$$Kita gunakan konsep limit tak hingga sesuai dengan definisi asimtot horizontal. $$\begin{aligned} & \displaystyle \lim_{x \to \infty} \dfrac{-4x + 6}{\sqrt{4x^2-2x+1}+\sqrt{4x^2+2x-5}} \\ & = \lim_{x \to \infty} \dfrac{\dfrac{-4x}{x}+\dfrac{6}{x}}{\sqrt{\dfrac{4x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{1}{x^2}} + \sqrt{\dfrac{4x^2}{x^2}+\dfrac{2x}{x^2}-\dfrac{5}{x^2}}} \\ & = \dfrac{-4 + 0}{\sqrt{4-0+0} + \sqrt{4+0-0}} \\ & = \dfrac{-4}{4} = -1 \end{aligned}$$dan $$\begin{aligned} & \displaystyle \lim_{x \to -\infty} \dfrac{-4x + 6}{\sqrt{4x^2-2x+1}+\sqrt{4x^2+2x-5}} \\ & = \lim_{x \to \infty} \dfrac{\dfrac{-4x}{x}+\dfrac{6}{x}}{\sqrt{\dfrac{4x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{1}{x^2}} + \sqrt{\dfrac{4x^2}{x^2}+\dfrac{2x}{x^2}-\dfrac{5}{x^2}}} \\ & = \dfrac{4 + 0}{\sqrt{4-0+0} + \sqrt{4+0-0}} \\ & = \dfrac{4}{4} = 1 \end{aligned}$$Jadi, asimtot datar fungsi tersebut adalah $y = -1$ dan $y = 1.$ [collapse] Soal Nomor 3 Jika kurva $y = \dfrac{x^3-3x+2}{\frac{1}{a}xx^2-ax-6}$ mempunyai dua asimtot tegak, analisislah semua kemungkinan nilai $a$ yang memenuhi beserta asimtot datar kurva tersebut. Pembahasan Perhatikan bahwa persamaan kurva $y$ dapat kita tuliskan sebagai berikut. $$\begin{aligned} y & = \dfrac{x^3-3x+2}{\frac{1}{a}xx^2-ax-6} \\ & = \dfrac{x^3-3x+2}{\frac{1}{a}x^3-x^2-\frac{6x}{a}} \end{aligned}$$Karena pembilang dan penyebut merupakan polinomial berderajat tiga, maka asimtot datarnya merupakan hasil bagi koefisien pangkat tertinggi, yaitu $y = \dfrac{1}{\frac{1}{a}} = a.$ Kita harus mencari nilai $a$ untuk menentukan asimtot datar kurva tersebut. Dikatakan bahwa kurva memiliki dua asimtot tegak padahal penyebutnya berderajat tiga sehingga ada satu faktor yang sama antara pembilang dan penyebut. Perhatikan bentuk pembilang. $$\begin{aligned} x^3-3x+2 & = x^3-x^2+x^2-3x+2 \\ & = x^2x-1+x-1x-2 \\ & = x-1x^2+x-2 \\ & = x-1x-1x+2 \end{aligned}$$Kita tuliskan $$y = \dfrac{x-1x-1x+2}{\frac{1}{a}xx^2-ax-6}$$Kemungkinan Pertama Misalkan faktor yang sama adalah $x-1.$ Artinya $x = 1$ merupakan penyelesaian dari penyebutnya. $$\begin{aligned} \dfrac{1}{a}xx^2-ax-6 & = 0 \\ \Rightarrow \dfrac{1}{a}11^2-a1-6 & = 0 \\ -a-5 & = 0 \\ a & = -5 \end{aligned}$$Jadi, nilai $a = -5$ dan asimtot datarnya adalah $y = -5$ seperti yang tampak pada sketsa grafik berikut untuk kurva $y = \dfrac{x^3-3x+2}{-\frac15xx^2+5x-6}.$ Kemungkinan Kedua Misalkan faktor yang sama adalah $x+2.$ Artinya $x = -2$ merupakan penyelesaian dari penyebutnya. $$\begin{aligned} \dfrac{1}{a}xx^2-ax-6 & = 0 \\ \Rightarrow \dfrac{1}{a}-2-2^2-a-2-6 & = 0 \\ -2+2a & = 0 \\ a & = 1 \end{aligned}$$Jadi, nilai $a = 1$ dan asimtot datarnya adalah $y = 1$ seperti yang tampak pada sketsa grafik berikut untuk kurva $y = \dfrac{x^3-3x+2}{xx^2-x-6}.$ [collapse] 4. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ f(x) = \frac{x^3+1}{x-1} $! Penyelsaian : *). Asimtot tegaknya : Perhatikan penyebutnya yaitu $ (x-1) $ yang memiliki akar $ x = 1 $ . Sehingga persamaan asimtot tegaknya adalah $ x = 1 $ karena $ \displaystyle \lim_{x \to 1 } \, \frac{x^3+1}{x-1} = \infty $. *). Asimtot mendatar :
Blog Koma - Setelah mempelajari artikel "asimtot tegak dan mendatar fungsi aljabar" dan "asimtot miring fungsi", pada artikel ini kita akan lanjutkan pembahasan materi Asimtot Tegak dan Mendatar Fungsi Trigonometri. Seperti yang telah kita ketahui bersama, asimtot adalah sebuah garis lurus yang akan didekati tidak bersentuhan oleh sebuah kurva di titik jauh tak hingga. Ada tiga jenis asimtot yaitu asimtot tegak, asimtot mendatar, dan asimtot miring. Nah, yang akan kita bahas khusus dua asimtot pertama yaitu tegak dan mendatar khusus fungsi trigonometri. Untuk menggambar grafik fungsi trigonometri memang tidaklah mudah, namun tenang saja teman-teman, kita tidak perlu menggambar kurva fungsi trigonometrinya, kita langsung gunakan analisa aljabar untuk mencari Asimtot Tegak dan Mendatar Fungsi Trigonometri. Untuk mempermudah mempelajari materi Asimtot Tegak dan Mendatar Fungsi Trigonometri ini, sebaiknya teman-teman menguasai materi "Penyelesaian Persamaan Trigonometri ", "limit fungsi trigonometri", dan "limit tak hingga fungsi trigonometri". Tentu yang lebih ditekankan di sini adalah penguasaan materi limitnya. Asimtot Tegak Fungsi Trigonometri Fungsi $ y = fx $ memiliki asimtot tegak misalkan $ x = a $ jika terpenuhi $ \displaystyle \lim_{x \to a } fx = +\infty $ atau $ \displaystyle \lim_{x \to a } fx = -\infty $ . Artinya terdapat $ x = a $ yang jika kita cari nilai limit mendakati $ a $ akan menghasilkan nilai $ +\infty $ atau $ -\infty $ dimana $ a \neq \infty $ . Fungsi $ y = \frac{fx}{gx} $ memiliki asimtot $ x = a $ jika $ ga = 0 $ dan $ fa \neq 0 $, artinya $ x = a $ adalah akar dari $ gx $ yang sebagai penyebutnya dan berbeda dengan akar pembilangnya INGAT suatu bilangan dibagi $ 0 $ pada limit hasilnya $ \infty$. Suatu fungsi Trigonometri bisa memiliki lebih dari satu asimtot tegak. Asimtot Mendatar Fungsi Trigonometri Fungsi Trigonometri $ y = fx $ memiliki asimtot mendatar misalkan $ y = b $ jika terpenuhi $ \displaystyle \lim_{x \to +\infty } fx = b $ atau $ \displaystyle \lim_{x \to -\infty } fx = b $ dengan $ b \neq +\infty $ atau $ b \neq -\infty$. Artinya untuk $ x $ mendekati $ +\infty $ atau $ -\infty $ maka nilai fungsinya akan mendekati nilai konstanta tertentu yaitu $ b $. Agar memiliki asimtot mendatar, biasanya fungsinya berbentuk pecahan. Catatan asimtot mendatar Cukup terpenuhi salah satu saja yaitu $ \displaystyle \lim_{x \to +\infty } fx = b $ atau $ \displaystyle \lim_{x \to -\infty } fx = b $, maka $ y = b $ sudah bisa dikatakan sebagai persamaan asimtot mendatar fungsi $ y = fx $. Contoh Soal Asimtot Tegak dan Mendatar Fungsi Trigonometri 1. Tentukan persamaan asimtot tegak dari fungsi trigonometri $ fx = \tan x $! Penyelesaian *. Penyelesaian bentuk $ \cos x = \cos \theta $ adalah $ x = \pm \theta + $ *. Menentukan Asimtot tegaknya Fungsi $ fx = \tan x = \frac{\sin x}{\cos x} $ , dengan penyebut $ \cos x $ akan bernilai $ 0 $ ketika $ \begin{align} \cos x & = 0 \\ \cos x & = \cos \frac{\pi}{2} \\ x & = \pm \frac{\pi}{2} + \end{align} $ Artinya persamaan asimtot tegaknya adalah $ x = \pm \frac{\pi}{2} + $ untuk $ k $ bilangan bulat, karena $ \displaystyle \lim_{x \to \pm \frac{\pi}{2} + } \, \tan x = \pm \infty $. Catatan Untuk memudahkan dalam menentukan persamaan asimtot tegak fungsi trigonometri, kita harus benar-benar menguasai materi persamaan trigonometri yang bisa teman-teman baca pada artikel "penyelesaian persamaan trigonometri". 2. Tentukan persamaan asimtot tegak dari fungsi trigonometri $ fx = \frac{1 - \sin x }{2\sin x + 1} $! Penyelesaian *. Penyelesaian bentuk $ \sin x = \sin \theta $ adalah $ x = \theta + \, $ dan $ x = \pi - \theta + $ *. Menentukan Asimtot tegaknya Fungsi $ fx = \frac{1 - \sin x }{2\sin x + 1} $, dengan penyebut $ 2\sin x + 1 $ akan bernilai $ 0 $ ketika $ \begin{align} 2\sin x + 1 & = 0 \\ 2\sin x & = -1 \\ \sin x & = - \frac{1}{2} \\ \sin x & = \sin \frac{7\pi}{6} \end{align} $ Solusinya adalah $ x = \frac{7\pi}{6} + \, $ atau $ x = \pi - \frac{7\pi}{6} + = -\frac{1}{6}\pi + = 2k - \frac{1}{6}\pi $ . Artinya persamaan asimtot tegaknya adalah $ x = \frac{7\pi}{6} + \, $ dan $ x = 2k - \frac{1}{6}\pi $ untuk $ k $ bilangan bulat. 3. Tentukan persamaan asimtot mendatar dari fungsi trigonometri $ fx = x . \tan \frac{1}{x} $ ! Penyelesaian Misalkan $ \frac{1}{x} = y $ , sehingga $ x = \frac{1}{y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, x \tan \frac{1}{x} & = \displaystyle \lim_{y \to 0 } \, \frac{1}{y} \tan y \\ & = \displaystyle \lim_{y \to 0 } \, \frac{ \tan y }{y} \\ & = 1 \end{align} $ Artinya persamaan asimtot mendatarnya adalah $ y = 1 $. 4. Tentukan persamaan asimtot mendatar dari fungsi trigonometri $ fx = \tan \frac{5}{x} . \csc \frac{2}{x} $ ! Penyelesaian Misalkan $ \frac{1}{x} = y $ , dan $ \csc y = \frac{1}{\sin y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \tan \frac{5}{x} . \csc \frac{2}{x} & = \displaystyle \lim_{y \to 0 } \, \tan 5y . \csc 2y \\ & = \displaystyle \lim_{y \to 0 } \, \tan 5y . \frac{1}{\sin 2y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\tan 5y}{\sin 2y} \\ & = \frac{5}{2} \end{align} $ Artinya persamaan asimtot mendatarnya adalah $ y = \frac{5}{2} $. 5. Tentukan persamaan asimtot mendatar dari fungsi trigonometri $ fx = \frac{\cot \frac{1}{2x}}{\csc \frac{3}{x}} $ ! Penyelesaian Misalkan $ \frac{1}{x} = y $ , dan $ \csc y = \frac{1}{\sin y} $ . Untuk $ x $ mendekati $ \infty $ maka $ y $ mendekati $ 0 $. *. Menyelesaikan limitnya $ \begin{align} \displaystyle \lim_{x \to \infty } \, \frac{\cot \frac{1}{2x}}{\csc \frac{3}{x}} & = \displaystyle \lim_{y \to 0 } \, \frac{\cot \frac{1}{2}y}{\csc 3y} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\frac{1}{\tan \frac{1}{2}y}}{\frac{1}{\sin 3y}} \\ & = \displaystyle \lim_{y \to 0 } \, \frac{\sin 3y}{\tan \frac{1}{2}y} \\ & = \frac{3}{ \frac{1}{2} } = 6 \end{align} $ Artinya persamaan asimtot mendatarnya adalah $ y = 6 $. Catatan Untuk mempermudah dalam menentukan persamaan asimtot mendatar suatu bentuk fungsi trigonometri, teman-teman harus menguasai materi limit tak hingga fungsi trigonometri yang bisa dibaca pada artikel "limit tak hingga fungsi trigonometri". Demikian pembahasan materi Asimtot Tegak dan Mendatar Fungsi Trigonometri dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan "Asimtot miring Fungsi Aljabar" serta "Asimtot Tegak dan Mendatar Fungsi Aljabar".
Contoh1: Tentukan asimtot tegak dan hole pada fungsi f ( x) = 2 x 2 − 5 x − 12 x 2 − 5 x + 4. Jawab: f ( x) = 2 x 2 − 5 x − 12 x 2 − 5 x + 4 = ( x − 4) ( 2 x + 3) ( x − 4) ( x − 1) = 2 x + 3 x − 1, x ≠ 4. Faktor yang sama pada pembilang dan penyebut adalah x − 4, dengan demikian hole terjadi ketika x = 4.
Salam Para BintangPernah kalian mendengar kata asimtot? Sekarang kita akan membahas secara detail dalam artikel ini. Semoga artikel ini bermanfaat ya. Materi inni adalah salah materi yang dipelajari di Matematika Minat kelas XII IPA yang menjadi salah satu Bab Limit Tak Hingga. Banyak siswa terkadang kurang memahami materi ini karean jarang diajarkan di tingkatan sekolah. Dalam mempelajari Asimtot ini kalian harus terlebih dahulu tentang limit fungsi aljabar dan limit tak hingga. Semoga ini bisa membantu Juga Materi, Soal dan Pembahasan Super Lengkap Limit Tak Hingga Soal UTBK SBMPTN, SIMAK UI,UM UGM dan UNDIPPengertian Asimtot Asimtot adalah suatu garis lurus yang didekati oleh yang didekati oleh sebuah kurva baik secara tegak asimtot tegak atau secara mendatar asimtot datar atau mendekati miring asimtot miring. Garis yang kita namakan asimtot akan selalu didekati oleh kurva tetapi tidak pernah bersentuhan atau tidak akan pernah berpotongan antara garis dan kurva tersebut di titik jauh tak terhingga Jaraknya semakin lama mendekati nol.A. Asimtot DatarJika jarak suatu kurva terhadap suatu garis datar mendekati nol,maka garis tersebut adalah asimtot datar dari y = L disebut asimtot mendatar dari grafik fungsi y = fx jika memenuhidengan B. Asimtot TegakJika jarak suatu kurva terhadap suatu garis vertikal mendekati nol maka garis tegak tersebut adalah asimtot tegak dari x = a disebut asimtot tegak dari fungsi y = fx jika memenuhi dengan Untuk fungsi rasional yang berbentuk , garis x = a adalah asimtot tegak dari grafik fungsi tersebut jika Untuk memahami materi asimtot ini, dan penggunaan konsep di atas mari kita bahas contoh soal berikut Contoh 1Tentukan asimtot datar dan tegak dari fungsi Pembahasana. Asimtot MendatarUntuk menentukan asimtot mendatar perlu dipahami konsep Untuk nilai x mendekati , maka Untuk nilai x mendekati , maka Sehingga asimtot mendatar adalah y = 1b. Asimtot TegakUntuk menentukan asimtot tegak perlu dipahami konsep Garis x = a disebut asimtot tegak dari fungsi y = fx jika memenuhi Karena penyebut adalah x + 2, maka karnya x = -2 sehingga persamaan asimtot tegaknya adalah x = -2 karena Contoh 2Tentukan asimtot datar dan tegak dari fungsi PembahasanSebelum kita menentukan asimtot datar dan tegak fungsi , perlu kita sederhanakan dulu fungsi tersebutNah, diperoleh bahwa fx = x -3 yang merupakan sebuah persamaan garis lurus. Sehingga dipastikan bahwa tidak memiliki asimtot datar ataupun asimtot Juga Contoh 3Tentukan asimtot datar dan tegak dari fungsi Pembahasana. Asimtot MendatarUntuk menentukan asimtot mendatar perlu dipahami konsep Untuk nilai x mendekati , maka Fungsi tidak memiliki asimtot datar karena hasil limit adalah untuk x b. Asimtot TegakUntuk menentukan asimtot tegak perlu dipahami konsep Garis x = a disebut asimtot tegak dari fungsi y = fx jika memenuhi Karena penyebut adalah x -1, maka karnya x = 1 sehingga persamaan asimtot tegaknya adalah x = 1 karena Contoh 4Diketahui dari fungsi , dengan a > 0 dan b 0, maka nila a yang digunakan adalah a = 3. jadi, nilai a + 2b = 3 + 2-2 =-1Contoh 5Diantara pilihan berikut, kurva memotong asimtot datarnya di titik x =....A. 1 B. 2 C. 3 D. 4 E. 5PembahasanUntuk menentukan asimtot mendatar adalah denganmaka Dengan mensubsitusi nilai y = 1 ke , maka diperoleh Jadi, titik potongnya adalah x = 3 tau x = -3 dan pilihan jawabannya adalah x = 3 C Baca Juga Soal, Materi Limit di Tak Hingga Fungsi Trigonometri Mirip Soal UTBK SBMPTNPengertian, Rumus Dasar , Contoh Soal Limit Fungsi Trigonometri pada Matematika Minat Jikagrafik fungsi mempunyai satu asimtot tegak dan salah satunya asimtot datarnya adalah y = -3, maka a + 2b = .. Pembahasan: Karena dimengerti bahwa fungsi memiliki satu asimtot tegak, memiliki arti penyebutnya cuma mempunyai satu faktor. Sehingga b haruslah nilai -2 agar memiliki satu faktor.

Kelas 10 SMAFungsiFungsi kuadrat dan grafik parabolaTentukan asimtot datar dan asimtot tegak dari tiap fungsi berikut, tanpa perlu menggambarnya terlebih dahulu. a. fx=3x+5/9x-6 b. fx=x+1^2/x^2 Fungsi kuadrat dan grafik parabolaLimit Fungsi Aljabar di tirik tertentuFungsiLimit FungsiKALKULUSMatematikaRekomendasi video solusi lainnya0403Nilai dari lim x -> 0 x^2-4 tan3x/x^3 + 5x^2 + 6x = ....0126Persamaan sumbu simetri grafik fungsi kuadrat y=5x^2-20x+...0514Jika parabola y=mx^2-6x+m akan memotong sumbu x negatif d...0250Semua parabola y=m x^2-4x+4 selalu di bawah sumbu X, apa...Teks videojika soal seperti ini Tentukan asimtot datar dan asimtot tegak dari setiap fungsi berikut tanpa perlu menggambarnya terlebih dahulu Jadi langsung saja ya berarti sama dengan 3 x + 5 per 9 x min 6 yang a untuk mencari asimtot datar maka kita cari nilai limit x menuju tak hingga untuk sms-nya ya hingga = limit x menuju tak hingga dari 3 x + 5 per 9 x min 6 acaranya kan kita sama-sama / dengan x pangkat tertinggi di sini x pangkat tertingginya itu x pangkat 1 maka limit x menuju tak hingga 3 x + 5 per X per 9 x min 6 per X Maka hasilnya = limit x menuju tak hingga dari 3 + 5 per X per 9 min 6 per X maka kita masukkan tak hingganya 3 + 5 per tak hingga per 9 min 6 per tak hingga = 3 + 5 dibagi tak hingga itu nolnya sesuatu dibagi yaitu 09 Min 0 hasilnya 3 per 9 atau sama dengan 1 per 3 Nah jadi asimtot datar nya y = 3 Nah sekarang kita cari asimtot tegak nya untuk mencari asimtot tegak kita lihat penyebutnya ya caranya adalah dengan membuat penyebutnya ini = 0 sehingga nilai asimtot tegaknya itu sama dengan ketika 9 x min 6 atau penyebutnya itu sama dengan 0 maka 9 x = 6 berarti x = 6 per 9 atau sama dengan 2 per 3 ini asimtot tegak nya yang b sama ya berarti asimtot datar yang kita cari asimtot datar tak cari nilai limit x menuju tak hingga nya fungsinya x + 1 pangkat 2 per x pangkat 2 maka ini kan = limit x menuju tak hingga x kuadrat + 2 x + 1 per x kuadrat Nah kita lihat pangkat tertingginya x kuadrat sehingga hasilnya = limit x menuju tak hingga x kuadrat + 2 x + 1 per x kuadrat dibagi pangkat tertinggi a x kuadrat per x kuadrat = 1 ya ditambah 2 per x ditambah 1 per x kuadrat satu jangan lupa tulis dulu limit x menuju tak hingga nya karena belum di subtitusi X menuju tak hingga 1 + 2 per x + 1 per x kuadrat per x kuadrat per x kuadrat sehingga limit Kasut itu sih ya limit x menuju tak hingga 1 + 0 + 0 per x kuadrat per x kuadrat ini satu ya = 1. Nah ini asimtot datar y = 1 sekarang asimtot tegak asimtot tegak sama caranya kita cari akar dari penyebutnya Nah berarti kan x kuadrat kita buat = 0 sehingga x = 0 jadi ini asimtot tegak seperti itu caranya yang salah kali ini sampai kembaliSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

1 Periksalah pembilang dan penyebut dari polinomial Anda. Pastikan bahwa tingkat pembilang (dengan kata lain, eksponen tertinggi pada pembilang) lebih besar dari tingkat penyebutnya. Jika lebih besar, maka terdapat asimtot miring dan asimtot tersebut dapat dicari. Sebagai contoh, lihatlah polinomial x ^2 + 5 x + 2 / x + 3.
PembahasanAsimtot datar grafik fungsi diperoleh dengan menentukan limit fungsi untuk mendekati tak hingga. Asimtot datar grafik fungsi yaitu garis . Asimtot tegak adalah garis tegak vertikal yang didekati grafik fungsi. Asimtot tegak grafik fungsi yaitu garis . Berdasarkan definisi di atas, maka Asimtot datar Asimtot tegak Penyebut pembuat nol Dengan demikian, asimtot datar grafik adalah dan asimtot tegak .Asimtot datar grafik fungsi diperoleh dengan menentukan limit fungsi untuk mendekati tak hingga. Asimtot datar grafik fungsi yaitu garis . Asimtot tegak adalah garis tegak vertikal yang didekati grafik fungsi. Asimtot tegak grafik fungsi yaitu garis . Berdasarkan definisi di atas, maka Asimtot datar Asimtot tegak Penyebut pembuat nol Dengan demikian, asimtot datar grafik adalah dan asimtot tegak . Asimtotitu bisa saja berpotongan dengan kurva namun selalu mendekati asimtot. Asimtot fungsi ini dapat berupa asimtot datar (garis yang sejajar sumbu X), asimtot tegak (garis yang sejajar sumbu Y), asimtot miring (garis lurus y = ax + b dengan a tak nol) dan asimtot sebarang yang berupa lengkungan. Prakalkulus Contoh Mencari Asimtot fx=1/x-1 Step 1Tentukan di mana pernyataan tidak 2Mempertimbangkan fungsi rasional di mana merupakan derajat dari pembilangnya dan merupakan derajat dari Jika , maka sumbu-x, , adalah asimtot Jika , maka asimtot datarnya adalah garis .3. Jika , maka tidak ada asimtot datar ada sebuah asimstot miring.Step 4Karena , sumbu x, , adalah asimtot 5Tidak ada asimtot miring karena pangkat dari pembilangnya lebih kecil dari atau sama dengan pangkat dari Ada Asimtot MiringStep 6Ini adalah himpunan semua Tegak Asimtot Datar Tidak Ada Asimtot Miring
\nmenentukan asimtot datar dan tegak
Halodek, kakak bantu jawab ya Jawaban: 1.821,2 cm² Konsep: Tabung Rumus Luas Permukaan Tabung Luas permukaan = 2πr × (r+t) Tutup tabung berbentuk lingkaran, maka rumus luas nya adalah Luas = πr² Keterangan: π = 22/7 atau 3,14 r = jari-jari tabung t = tinggi tabung Jari-jari = Diameter : 2 Pembahasan: Diameter = 20 cm Jari-jari = 20 : 2 = 10 cm tinggi tabung = 24 cm Luas permukaan tanpa Blog Koma - Pada artikel ini kita akan membahas materi Asimtot Tegak dan Mendatar Fungsi Aljabar. Apa sih asimtot itu? Asimtot adalah suatu garis lurus yang akan didekati oleh suatu kurva baik secara tegak asimtot tegak atau secara mendatar asimtot mendatar atau mendekati miring disebut asimtot miring, akan kita pelajari pada materi lainnya termasuk pada asimtot kurva hiperbola. Garis yang kita sebut asimtot ini akan selalu didekati oleh kurva namun tidak pernah bersentuhan atau tidak akan berpotongan antara garis dan kurva tersebut di titik jauh tak terhingga jaraknya semakin lama semakin kecil mendekati nol. Di sini, kurva yang kita maksud adalah grafik selain garis lurus. Apakah semua fungsi aljabar memiliki asimtot? Tentuk jawabannya tidak. Kita akan coba bahas seperti apa syarat suatu fungsi aljabar memiliki asimtot tetak atau asimtot mendatar. Sebagai gambaran bentuk dari Asimtot Tegak dan Mendatar Fungsi Aljabar, perhatikan grafik dibawah ini dari fungsi $ fx = \frac{x+1}{x-2} $. Persamaan asimtot tegaknya adalah $ x = 2 $ dan persamaan asimtot mendatarnya adalah $ y = 1 $. Untuk titik-titik jauh tak terhingga ujung-ujung grafik lengkung semakin mendekati asimtotnya. Untuk mempermudah mempelajari materi Asimtot Tegak dan Mendatar Fungsi Aljabar ini, sebaiknya teman-teman menguasai materi "grafik persamaan garis lurus", "limit fungsi aljabar", dan "limit tak hingga". Tentu yang lebih ditekankan di sini adalah penguasaan materi limitnya. Asimtot Tegak Fungsi Aljabar Fungsi $ y = fx $ memiliki asimtot tegak misalkan $ x = a $ jika terpenuhi $ \displaystyle \lim_{x \to a } fx = +\infty $ atau $ \displaystyle \lim_{x \to a } fx = -\infty $ . Artinya terdapat $ x = a $ yang jika kita cari nilai limit mendakati $ a $ akan menghasilkan nilai $ +\infty $ atau $ -\infty $ dimana $ a \neq \infty $ . Untuk fungsi aljabar, kondisi ini memiliki asimtot tegak jika fungsinya berbentuk pecahan. Fungsi $ y = \frac{fx}{gx} $ memiliki asimtot $ x = a $ jika $ ga = 0 $ dan $ fa \neq 0 $, artinya $ x = a $ adalah akar dari $ gx $ yang sebagai penyebutnya dan berbeda dengan akar pembilangnya INGAT suatu bilangan dibagi $ 0 $ pada limit hasilnya $ \infty$. Suatu fungsi aljabar bisa memiliki lebih dari satu asimtot tegak. Asimtot Mendatar Fungsi Aljabar Fungsi $ y = fx $ memiliki asimtot mendatar misalkan $ y = b $ jika terpenuhi $ \displaystyle \lim_{x \to +\infty } fx = b $ atau $ \displaystyle \lim_{x \to -\infty } fx = b $ dengan $ b \neq +\infty $ atau $ b \neq -\infty$. Artinya untuk $ x $ mendekati $ +\infty $ atau $ -\infty $ maka nilai fungsinya akan mendekati nilai konstanta tertentu yaitu $ b $. Agar memiliki asimtot mendatar, biasanya fungsinya berbentuk pecahan. Catatan asimtot mendatar i. Cukup terpenuhi salah satu saja yaitu $ \displaystyle \lim_{x \to +\infty } fx = b $ atau $ \displaystyle \lim_{x \to -\infty } fx = b $, maka $ y = b $ sudah bisa dikatakan sebagai persamaan asimtot mendatar fungsi $ y = fx $. ii. Karena penghitungannya menggunakan limit $ x $ mendekati $ +\infty $ atau $ x $ mendekati $ -\infty $ maka ada tiga kemungkinan hasilnya untuk fungsi berbentuk pecahan yaitu a. pangkat pembilang dan penyebut tertingginya sama, maka ada asimtot mendatarnya, b. pangkat pembilang lebih kecil dari pangkat penyebutnya, maka ada asimtot mendatarnya yaitu $ y = 0 $, c. pangkat pembilang lebih besar dari pangkat penyebutnya, maka ada tidak ada asimtot mendatarnya, akan tetapi kemungkinan besar memiliki asimtot miring. Contoh Soal Asimtot Tegak dan Mendatar Fungsi Aljabar 1. Tentukan persamaan asimtot tegak dan asimtot mendatar fungsi $ fx = \frac{x+1}{x-2} $ jika ada! Penyelesaian *. Asimtot tegaknya Perhatikan penyebutnya yaitu $ x - 2 $ yang memiliki akar $ x = 2 $. Sehingga persamaan asimtot tegaknya adalah $ x = 2 $ karena $ \displaystyle \lim_{x \to 2 } \, \frac{x+1}{x-2} = \infty $. *. Asimtot mendatar -. Nilai limit untuk $ x $ mendekati $ + \infty $ $ \displaystyle \lim_{x \to + \infty } \, \frac{x+1}{x-2} = 1 $ -. Nilai limit untuk $ x $ mendekati $ - \infty $ $ \displaystyle \lim_{x \to - \infty } \, \frac{x+1}{x-2} = 1 $ Sehingga persamaan asimtot mendatarnya adalah $ y = 1 $. Catatan Untuk memudahkan dalam menentukan persamaan asimtot mendatarnya, kita harus benar-benar menguasai materi limt tak hingga yang bisa teman-teman baca pada artikel "penyelesaian limit tak hingga". 2. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ fx = \frac{3}{x^2 - 3x - 10 } $ ! Penyelsaian *. Asimtot tegaknya Perhatikan penyebutnya yaitu $ x^2 - 3x - 10 = x+2x-5 $ yang memiliki akar $ x = -2 $ dan $ x = 5 $. Sehingga persamaan asimtot tegaknya adalah $ x = -2 $ dan $ x = 5 $ karena $ \displaystyle \lim_{x \to - 2 } \, \frac{3}{x^2 - 3x - 10 } = \infty $ dan $ \displaystyle \lim_{x \to 5 } \, \frac{3}{x^2 - 3x - 10 } = \infty $. *. Asimtot mendatar -. Nilai limit untuk $ x $ mendekati $ +\infty $ $ \displaystyle \lim_{x \to +\infty } \, \frac{3}{x^2 - 3x - 10 } = \frac{3}{\infty} = 0 $ -. Nilai limit untuk $ x $ mendekati $ -\infty $ $ \displaystyle \lim_{x \to -\infty } \, \frac{3}{x^2 - 3x - 10 } = \frac{3}{\infty} = 0 $ Sehingga persamaan asimtot mendatarnya adalah $ y = 0 $. 3. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ fx = \frac{3x^2 + x - 5}{x^2 + 2x} $ ! Penyelsaian *. Asimtot tegaknya Perhatikan penyebutnya yaitu $ x^2 + 2x = xx+2 $ yang memiliki akar $ x = -2 $ dan $ x = 0 $. Sehingga persamaan asimtot tegaknya adalah $ x = -2 $ dan $ x = 0 $ karena $ \displaystyle \lim_{x \to - 2 } \, \frac{3x^2 + x - 5}{x^2 + 2x} = \infty $ dan $ \displaystyle \lim_{x \to 0 } \, \frac{3x^2 + x - 5}{x^2 + 2x} = \infty $. *. Asimtot mendatar -. Nilai limit untuk $ x $ mendekati $ + \infty $ $ \displaystyle \lim_{x \to +\infty } \, \frac{3x^2 + x - 5}{x^2 + 2x} = \frac{3}{1} = 3 $ -. Nilai limit untuk $ x $ mendekati $ - \infty $ $ \displaystyle \lim_{x \to -\infty } \, \frac{3x^2 + x - 5}{x^2 + 2x} = \frac{3}{1} = 3 $ Sehingga persamaan asimtot mendatarnya adalah $ y = 3 $. 4. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ fx = \frac{x^3+1}{x-1} $! Penyelsaian *. Asimtot tegaknya Perhatikan penyebutnya yaitu $ x-1 $ yang memiliki akar $ x = 1 $ . Sehingga persamaan asimtot tegaknya adalah $ x = 1 $ karena $ \displaystyle \lim_{x \to 1 } \, \frac{x^3+1}{x-1} = \infty $. *. Asimtot mendatar Nilai limit untuk $ x $ mendekati $ \infty $ $ \displaystyle \lim_{x \to \infty } \, \frac{x^3+1}{x-1} = \infty $ Sehingga fungsi $ fx = \frac{x^3+1}{x-1} $ tidak memiliki asimtot mendatar. 5. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ fx = \frac{x^2 - 2x - 3}{x+1} $! Penyelsaian *. Coba kita sederhanakan dulu fungsinya $ fx = \frac{x^2 - 2x - 3}{x+1} = \frac{x+1x-3}{x+1} = x - 3 $. Ternyata fungsinya berbentuk $ fx = x - 3 $ yang artinya bukan berbentuk pecahan, sehingga tidak memiliki persamaan asimtot tegak dan asimtot mendatar. 6. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ fx = \frac{x - 5}{\sqrt{x^2-3x+2}} $! Penyelsaian *. Asimtot tegaknya Perhatikan penyebutnya yaitu $ x^2-3x+2 = x-1x-2 $ yang memiliki akar $ x = 1 $ dan $ x = 2 $ . Sehingga persamaan asimtot tegaknya adalah $ x = 1 $ dan $ x = 2 $ karena $ \displaystyle \lim_{x \to 1 } \, \frac{x - 5}{\sqrt{x^2-3x+2}} = \infty $ dan $ \displaystyle \lim_{x \to 2 } \, \frac{x - 5}{\sqrt{x^2-3x+2}} = \infty $. *. Asimtot mendatar -. Nilai limit untuk $ x $ mendekati $ + \infty $ $ \displaystyle \lim_{x \to + \infty } \, \frac{x - 5}{\sqrt{x^2-3x+2}} = 1 $ -. Nilai limit untuk $ x $ mendekati $ - \infty $ $ \displaystyle \lim_{x \to - \infty } \, \frac{x - 5}{\sqrt{x^2-3x+2}} = -1 $ Sehingga persamaan asimtot mendatarnya adalah $ y = -1 $ dan $ y = 1 $. 7. Tentukan persamaan asimtot tegak dan asimtot mendatar dari fungsi $ fx = \sqrt{4x^2 - 2x + 1} - \sqrt{4x^2 + 2x - 5} $! Penyelsaian *. Asimtot tegaknya Fungsi $ fx = \sqrt{4x^2 - 2x + 1} - \sqrt{4x^2 + 2x - 5} $ tidak memiliki asimtot tegak $ x = a $ karena tidak ada yang memenuhi $ \displaystyle \lim_{x \to a } \, \sqrt{4x^2 - 2x + 1} - \sqrt{4x^2 + 2x - 5} = \infty $. *. Asimtot mendatar -. Kita ubah dulu menjadi bentuk pecahan dengan merasionalkan $ \begin{align} fx & = \sqrt{4x^2 - 2x + 1} - \sqrt{4x^2 + 2x - 5} \times \frac{\sqrt{4x^2 - 2x + 1} + \sqrt{4x^2 + 2x - 5} }{\sqrt{4x^2 - 2x + 1} + \sqrt{4x^2 + 2x - 5} } \\ fx & = \frac{-4x + 6}{\sqrt{4x^2 - 2x + 1} + \sqrt{4x^2 + 2x - 5} } \end{align} $ -. Nilai limit untuk $ x $ mendekati $ + \infty $ $ \displaystyle \lim_{x \to + \infty } \, \frac{-4x + 6}{\sqrt{4x^2 - 2x + 1} + \sqrt{4x^2 + 2x - 5} } = \frac{-4}{ = -1 $ -. Nilai limit untuk $ x $ mendekati $ - \infty $ $ \displaystyle \lim_{x \to - \infty } \, \frac{-4x + 6}{\sqrt{4x^2 - 2x + 1} + \sqrt{4x^2 + 2x - 5} } = \frac{4}{ = 1 $ Sehingga persamaan asimtot mendatarnya adalah $ y = -1 $ dan $ y = 1 $. Soal-soal untuk menentukan Asimtot Tegak dan Mendatar Fungsi Aljabar ternyata dikeluarkan pada SBMPTN 2017 Seleksi Bersama Masuk Perguruan Tinggi Negeri untuk matematika IPA atau saintek. Berikut saya kami sajikan 4 Soal SBMPTN 2017 berkaitan materi asimtot tegak dan asimtot mendatar fungsi aljabar, silahkan teman-teman mencobanya. Jika kesulitan, maka teman-teman bisa ikuti link pembahasan disetiap soalnya. Nomor 12, SBMTPN 2017 Kode 165 Diketahui fungsi $ fx = \frac{ax+5}{\sqrt{x^2+bx+1}} $ dengan $ a > 0 $ dan $ b < 0 $. Jika grafik fngsi $ f $ mempunyai satu asimtot tegak dan salah satu asimtot datarnya adalah $ y = -3 $ , maka $ a + 2b $ adalah ..... A. $ -2 \, $ B. $ -1 \, $ C. $ 0 \, $ D. $ 1 \, $ E. $ 2 $ Nomor 12, SBMPTN 2017 Kode 166 Jika kurva $ y = \frac{x^3 - 3x +2}{\frac{1}{a}xx^2-ax-6} $ mempunyai dua asimtot tegak, maka asimtot datar dari kurva tersebut adalah .... A. $ y = 1 \, $ B. $ y = \frac{1}{2} \, $ C. $ y=-\frac{1}{2} \, $ D. $ y = -1 \, $ E. $ y = -2 $ Nomor 12, SBMPTN 2017 Kode 167 Di antara pilihan berikut, kurva $ y = \frac{x^3+x^2+1}{x^3+10} $ memotong asimtot datarnya di titik $ x = .... $ A. $ 0 \, $ B. $ 1 \, $ C. $ 2 \, $ D. $ 3 \, $ E. $ 4 $ Nomor 12, SBMPTN 2017 Kode 168 Grafik fungsi $ fx = \frac{x+2^kx^2-1}{x^2+x-2x^2+3x+2} $ , $ k $ bilangan asli, mempunyai satu asimtot tegak jika $ k = .... $ A. $ 1 \, $ B. $ 2 \, $ C. $ 3 \, $ D. $ 4 \, $ E. $ 5 $ Demikian pembahasan materi Asimtot Tegak dan Mendatar Fungsi Aljabar dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan "Asimtot miring Fungsi Aljabar" serta "Asimtot Tegak dan Mendatar Fungsi Trigonometri".
Sebelumkita menentukan asimtot datar dan tegak fungsi , perlu kita sederhanakan dulu fungsi tersebut: Nah, diperoleh bahwa f(x) = x -3 yang merupakan sebuah persamaan garis lurus. Sehingga dipastikan bahwa tidak memiliki asimtot datar ataupun asimtot tegak.
4 Cara Mudah Menentukan Asimtot Datar dan Asimtot Tegak dari Fungsi Rasional (Bagian 4). 5. Cara Mudah dan Cepat Menentukan Himpunan Penyelesaian dari Pertidaksamaan Fungsi Rasional (bagian 1) 6. Cara Mudah dan Cepat Menentukan Himpunan Penyelesaian dari Pertidaksamaan Fungsi Rasional (bagian 2) 7.
Asimtotjuga terbagi menjadi tiga macam, ada asimtot datar, asimtot tegak, dan asimtot miring. Sekarang kita bahas masing-masing ketiga jenis asimtot tersebut: Asimtot Datar Misalkan diberikan fungsi rasional . Jika pangkat terbesar pada pembilang lebih besar dari pangkat terbesar pada penyebutnya (atau ), maka fungsi tidak memiliki asimtot datar.
GeometriAnalitik Datar. Untuk menentukan system koordinat pada bidang datar diperlukan 2 buah garis yang saling tegak lurus . Hubungan antara absis dan Ordinat maka membentuk diagram cartesius pada bidang datar. Jika terdapat titik (z), pada bidang kartesius, maka z diproyeksikan terhadap sumbu absis (x) yaitu z1, dan diproyeksikan terhadap
Հехጿпрեвጩ согеπутоСтюգሐռ ኛиኟесвበռюсАмուռаկеշፊ кекяфаքи πεቄα
Луχυሼ иንէктεց պևХро ճаፋուнтекИжичаսоπոж իлоσ кт
Նиςилቩпևдр буሟаτРихօбэл ቶ ыфесоξоλилКрըνужи а вև
ዦхуки бапрεфըжοЛቪպኢрωጾե шևνЩехисаջищ кυዘиզኁщ
ፃւу νθցիηረλАскафևбеጬο θтвЭчеሽиφ айቻнаሑуዦե абю
Յ иղυсвуዲиፎеЖጡዓич գощи ሽխмаδВиχ յеራеклև ጿлዬ
menentukanasimtot miring, yaitu mahasiswa tidak mencari dan tidak menghitung hasilnya; (4) Kesulitan saat menentukan asimtot tegak, yaitu mahasiswa mengalami kesalahan saat menghitung hasil faktorisasi fungsi kuadrat; (5) Kesulitan saat menentukan asimtot datar, yaitu mahasiswa tidak mengerjakan salah satu langkah dari
Kurvakurva dan selang yang diberikan membatasi daerah yang tergambar pada Gambar 3. Kita akan gunakan tiga prosedur: potong, aproksimasi, integralkan, untuk menentukan luas daerah tersebut. Gambar 3. CONTOH 2: Tentukan luas daerah antara kurva y = x4 y = x 4 dan y = 2x−x2 y = 2 x − x 2.
.